首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13230篇
  免费   2052篇
  国内免费   884篇
电工技术   477篇
综合类   852篇
化学工业   4737篇
金属工艺   1503篇
机械仪表   750篇
建筑科学   618篇
矿业工程   326篇
能源动力   416篇
轻工业   614篇
水利工程   255篇
石油天然气   246篇
武器工业   130篇
无线电   1065篇
一般工业技术   2199篇
冶金工业   482篇
原子能技术   278篇
自动化技术   1218篇
  2024年   31篇
  2023年   238篇
  2022年   315篇
  2021年   545篇
  2020年   505篇
  2019年   498篇
  2018年   520篇
  2017年   594篇
  2016年   642篇
  2015年   648篇
  2014年   877篇
  2013年   1018篇
  2012年   939篇
  2011年   982篇
  2010年   772篇
  2009年   805篇
  2008年   743篇
  2007年   862篇
  2006年   794篇
  2005年   601篇
  2004年   558篇
  2003年   483篇
  2002年   379篇
  2001年   274篇
  2000年   179篇
  1999年   171篇
  1998年   156篇
  1997年   149篇
  1996年   112篇
  1995年   129篇
  1994年   104篇
  1993年   81篇
  1992年   89篇
  1991年   80篇
  1990年   56篇
  1989年   45篇
  1988年   22篇
  1987年   26篇
  1986年   14篇
  1985年   25篇
  1984年   23篇
  1983年   14篇
  1982年   37篇
  1981年   9篇
  1980年   2篇
  1979年   6篇
  1978年   2篇
  1975年   4篇
  1955年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
1.
《Soils and Foundations》2022,62(1):101103
The present study proposes a new elasto-plastic constitutive model that considers different types of hydrates in pore spaces. Many triaxial compression tests on both methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have been carried out over the last few decades. It has been revealed that methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have different strength and dilatancy properties even though they have the same hydrate contents. The reason for this might be due to the different types of hydrate morphology. In this study, therefore, the effect of the hydrate morphology on the mechanical response of gas-hydrate-bearing sediments is investigated through a model analysis by taking into account the different hardening rules corresponding to each type of hydrate morphology. In order to evaluate the capability of the proposed model, it is applied to the results of past triaxial compression tests on both methane hydrate-containing and carbon dioxide hydrate-containing sand specimens. The model is found to successfully reproduce the different stress–strain relations and dilatancy behaviors, by only giving consideration to the different morphology distributions and not changing the fitting parameters. The model is then used to predict a possible range in which the maximum deviator stress can move for various hydrate morphology ratios; the range is defined as the strength-band. The predicted curve of the maximum deviator stress obtained by the constitutive model matches the empirical equations obtained from past experiments. It supports the fact that the hydrate morphology ratio changes with the total hydrate saturation. These findings will contribute to a better understanding of the relation between the microscopic structures and macro-mechanical behaviors of gas-hydrate-bearing sediments.  相似文献   
2.
3.
4.
Numerous brain diseases are associated with abnormalities in morphology and density of dendritic spines, small membranous protrusions whose structural geometry correlates with the strength of synaptic connections. Thus, the quantitative analysis of dendritic spines remodeling in microscopic images is one of the key elements towards understanding mechanisms of structural neuronal plasticity and bases of brain pathology. In the following article, we review experimental approaches designed to assess quantitative features of dendritic spines under physiological stimuli and in pathological conditions. We compare various methodological pipelines of biological models, sample preparation, data analysis, image acquisition, sample size, and statistical analysis. The methodology and results of relevant experiments are systematically summarized in a tabular form. In particular, we focus on quantitative data regarding the number of animals, cells, dendritic spines, types of studied parameters, size of observed changes, and their statistical significance.  相似文献   
5.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
6.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
7.
为分析单层石墨烯纳米片对核态池沸腾换热的影响机理,对基液为R141b、分散相为单层石墨烯纳米片的纳米制冷剂的核态池沸腾换热特征进行了测定,采用Hot Disk热物性分析仪和铂金板法分别测定了石墨烯纳米制冷剂的热导率和表面张力,采用接触角测量仪和扫描电子显微镜(SEM)观测了沸腾后加热表面的润湿性和形貌特征。实验中,单层石墨烯纳米片的质量百分含量(ω)为0.02%~0.50%,实验压力为一个标准大气压,热流密度为20~200 kW/m2。实验结果表明:单层石墨烯纳米片的加入,使制冷剂R141b的核态池沸腾换热得到强化;当ω=0.2%时,换热系数提高比例出现峰值,为57.7%。伴随ω的增加,石墨烯纳米制冷剂的热导率增大、表面张力减小,沸腾表面润湿性增强且微腔数先增后减,综合作用的结果导致存在一个最佳的单层石墨烯纳米片浓度(即ω=0.2%)使换热系数最高。  相似文献   
8.
Xue  Xiang  Wang  Tong 《热科学学报(英文版)》2020,29(2):435-444
A centrifugal compressor is a typical compressed air energy storage device. In order to ensure the safety of the compressed energy storage process in the compressor, the internal unsteady flow phenomena need to be closely monitored, especially some serious ones like stall and surge. It is necessary to explore the mechanism of flow instabilities under different conditions. A centrifugal air compressor was tested with a vaneless diffuser and a variable vaned diffuser with five different vane setting angles, respectively. Various diffuser types resulted in various modes of flow instabilities prior to surge. The vaneless region between the impeller and the diffuser was focused on. Multiple high-speed sensors were arranged along the circumferential direction. The pressure signals at all these positions were being measured and collected in real time as the compressor was slowly throttled into surge. This paper emphasizes on the influence of matching between the impeller and the diffuser on the flow instability. The experimental results showed that the diffuser vane setting angle affected the stall characteristics. Due to the asymmetry of the volute, the circumferential pressure distribution was always severely distorted prior to surge. A high-pressure region appeared near the volute tongue, and a low-pressure region was formed away from the volute tongue. In the case of the vaned diffuser with non-design installation angle and the vaneless diffuser, the rotating stall signal was originated in the low-pressure region and propagated circumferentially. However, in the case of the vaned diffuser with the design installation angle, the circumferential high-pressure region became the most sensitive region for the generation of stall, and another form of instability occurred there. Both the inducement and development of these flow instabilities have been studied. The dynamic experimental research on the compressor matching different types of diffusers could be a good case supplement.  相似文献   
9.
10.
This paper presents new results of studying the influence of parameters of microplasma spraying (MPS) of Ti wire on the structure and properties of Ti coatings. Based on the design of the experiment and the results of the SEM study, certain spraying modes were chosen to form the desired composition and structure of the Ti coating.  The dense sublayer (up to 300 µm thick) provides good adhesion to the substrate, and a porous top layer can accelerate the coated implant ingrowth with the bone.  This technology is developed for the manufacture of coated endoprosthesis implants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号